Creates an image of the models selected using bas
.
Usage
# S3 method for class 'bas'
image(
x,
top.models = 20,
intensity = TRUE,
prob = TRUE,
log = TRUE,
rotate = TRUE,
color = "rainbow",
subset = NULL,
drop.always.included = FALSE,
offset = 0.75,
digits = 3,
vlas = 2,
plas = 0,
rlas = 0,
...
)
Arguments
- x
A BMA object of type 'bas' created by BAS
- top.models
Number of the top ranked models to plot
- intensity
Logical variable, when TRUE image intensity is proportional to the probability or log(probability) of the model, when FALSE, intensity is binary indicating just presence (light) or absence (dark) of a variable.
- prob
Logical variable for whether the area in the image for each model should be proportional to the posterior probability (or log probability) of the model (TRUE) or with equal area (FALSE).
- log
Logical variable indicating whether the intensities should be based on log posterior odds (TRUE) or posterior probabilities (FALSE). The log of the posterior odds is for comparing the each model to the worst model in the top.models.
- rotate
Should the image of models be rotated so that models are on the y-axis and variables are on the x-axis (TRUE)
- color
The color scheme for image intensities. The value "rainbow" uses the rainbow palette. The value "blackandwhite" produces a black and white image (greyscale image)
- subset
indices of variables to include/exclude in plot
- drop.always.included
logical variable to drop variables that are always forced into the model. FALSE by default.
- offset
numeric value to add to intensity
- digits
number of digits in posterior probabilities to keep
- vlas
las parameter for placing variable names; see par
- plas
las parameter for posterior probability axis
- rlas
las parameter for model ranks
- ...
Other parameters to be passed to the
image
andaxis
functions.
Details
Creates an image of the model space sampled using bas
. If a
subset of the top models are plotted, then probabilities are renormalized
over the subset.
Note
Suggestion to allow area of models be proportional to posterior probability due to Thomas Lumley
References
Clyde, M. (1999) Bayesian Model Averaging and Model Search Strategies (with discussion). In Bayesian Statistics 6. J.M. Bernardo, A.P. Dawid, J.O. Berger, and A.F.M. Smith eds. Oxford University Press, pages 157-185.
See also
Other bas methods:
BAS
,
bas.lm()
,
coef.bas()
,
confint.coef.bas()
,
confint.pred.bas()
,
diagnostics()
,
fitted.bas()
,
force.heredity.bas()
,
plot.confint.bas()
,
predict.bas()
,
predict.basglm()
,
summary.bas()
,
update.bas()
,
variable.names.pred.bas()
Other bas plots:
plot.bas()
,
plot.coef.bas()
Author
Merlise Clyde clyde@stat.duke.edu