Skip to contents

summary and print methods for Bayesian model averaging objects created by bas Bayesian Adaptive Sampling

Usage

# S3 method for class 'bas'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x

object of class 'bas'

digits

optional number specifying the number of digits to display

...

other parameters to be passed to print.default

Details

The print methods display a view similar to print.lm . The summary methods display a view specific to Bayesian model averaging giving the top 5 highest probability models represented by their inclusion indicators. Summaries of the models include the Bayes Factor (BF) of each model to the model with the largest marginal likelihood, the posterior probability of the models, R2, dim (which includes the intercept) and the log of the marginal likelihood.

See also

Author

Merlise Clyde clyde@stat.duke.edu

Examples


library(MASS)
data(UScrime)
UScrime[, -2] <- log(UScrime[, -2])
crime.bic <- bas.lm(y ~ ., data = UScrime, n.models = 2^15, prior = "BIC", initprobs = "eplogp")
print(crime.bic)
#> 
#> Call:
#> bas.lm(formula = y ~ ., data = UScrime, n.models = 2^15, prior = "BIC", 
#>     initprobs = "eplogp")
#> 
#> 
#>  Marginal Posterior Inclusion Probabilities: 
#> Intercept          M         So         Ed        Po1        Po2         LF  
#>    1.0000     0.9335     0.3277     0.9910     0.7247     0.4602     0.2935  
#>       M.F        Pop         NW         U1         U2        GDP       Ineq  
#>    0.3298     0.4963     0.8346     0.3481     0.7752     0.5254     0.9992  
#>      Prob       Time  
#>    0.9541     0.5433  
summary(crime.bic)
#>           P(B != 0 | Y)   model 1       model 2     model 3     model 4
#> Intercept     1.0000000   1.00000  1.000000e+00   1.0000000   1.0000000
#> M             0.9335117   1.00000  1.000000e+00   1.0000000   1.0000000
#> So            0.3276563   0.00000  1.000000e+00   0.0000000   0.0000000
#> Ed            0.9910219   1.00000  1.000000e+00   1.0000000   1.0000000
#> Po1           0.7246635   1.00000  1.000000e+00   1.0000000   1.0000000
#> Po2           0.4602481   0.00000  1.000000e+00   0.0000000   0.0000000
#> LF            0.2935326   0.00000  1.000000e+00   0.0000000   0.0000000
#> M.F           0.3298168   0.00000  1.000000e+00   0.0000000   0.0000000
#> Pop           0.4962869   0.00000  1.000000e+00   0.0000000   0.0000000
#> NW            0.8346412   1.00000  1.000000e+00   1.0000000   1.0000000
#> U1            0.3481266   0.00000  1.000000e+00   0.0000000   0.0000000
#> U2            0.7752102   1.00000  1.000000e+00   1.0000000   1.0000000
#> GDP           0.5253694   0.00000  1.000000e+00   0.0000000   1.0000000
#> Ineq          0.9992058   1.00000  1.000000e+00   1.0000000   1.0000000
#> Prob          0.9541470   1.00000  1.000000e+00   1.0000000   1.0000000
#> Time          0.5432686   1.00000  1.000000e+00   0.0000000   1.0000000
#> BF                   NA   1.00000  1.267935e-04   0.7609295   0.5431578
#> PostProbs            NA   0.01910  1.560000e-02   0.0145000   0.0133000
#> R2                   NA   0.84200  8.695000e-01   0.8265000   0.8506000
#> dim                  NA   9.00000  1.600000e+01   8.0000000  10.0000000
#> logmarg              NA -22.15855 -3.113150e+01 -22.4317627 -22.7689035
#>               model 5
#> Intercept   1.0000000
#> M           1.0000000
#> So          0.0000000
#> Ed          1.0000000
#> Po1         1.0000000
#> Po2         0.0000000
#> LF          0.0000000
#> M.F         0.0000000
#> Pop         1.0000000
#> NW          1.0000000
#> U1          0.0000000
#> U2          1.0000000
#> GDP         0.0000000
#> Ineq        1.0000000
#> Prob        1.0000000
#> Time        0.0000000
#> BF          0.5203179
#> PostProbs   0.0099000
#> R2          0.8375000
#> dim         9.0000000
#> logmarg   -22.8118635