Creates an object representing the prior distribution on coefficients for BAS that corresponds to the test-based Bayes Factors.
Examples
testBF.prior(100)
#> $family
#> [1] "testBF.prior"
#>
#> $g
#> [1] 100
#>
#> $class
#> [1] "g-prior"
#>
#> $hyper
#> [1] 100
#>
#> $hyper.parameters
#> $hyper.parameters$g
#> [1] 100
#>
#> $hyper.parameters$loglik_null
#> NULL
#>
#>
#> attr(,"class")
#> [1] "prior"
library(MASS)
data(Pima.tr)
# use g = n
bas.glm(type ~ .,
data = Pima.tr, family = binomial(),
betaprior = testBF.prior(nrow(Pima.tr)),
modelprior = uniform(), method = "BAS"
)
#>
#> Call:
#> bas.glm(formula = type ~ ., family = binomial(), data = Pima.tr,
#> betaprior = testBF.prior(nrow(Pima.tr)), modelprior = uniform(),
#> method = "BAS")
#>
#>
#> Marginal Posterior Inclusion Probabilities:
#> Intercept npreg glu bp skin bmi ped
#> 1.0000 0.4252 1.0000 0.0706 0.1264 0.6139 0.8075
#> age
#> 0.6705