Information Criterion Families of Prior Distribution for Coefficients in BMA Models
Source:R/beta_priors.R
IC.prior.Rd
Creates an object representing the prior distribution on coefficients for BAS.
Details
The log marginal likelihood is approximated as -2*(deviance + penalty*dimension). Allows alternatives to AIC (penalty = 2) and BIC (penalty = log(n)). For BIC, the argument may be missing, in which case the sample size is determined from the call to `bas.glm` and used to determine the penalty.
Examples
IC.prior(2)
#> $family
#> [1] "IC"
#>
#> $class
#> [1] "IC"
#>
#> $hyper
#> [1] 2
#>
#> $hyper.parameters
#> $hyper.parameters$penalty
#> [1] 2
#>
#>
#> attr(,"class")
#> [1] "prior"
aic.prior()
#> $family
#> [1] "AIC"
#>
#> $class
#> [1] "IC"
#>
#> $hyper.parameters
#> $hyper.parameters$penalty
#> [1] 2
#>
#>
#> $hyper
#> [1] 2
#>
#> attr(,"class")
#> [1] "prior"
bic.prior(100)
#> $family
#> [1] "BIC"
#>
#> $class
#> [1] "IC"
#>
#> $hyper.parameters
#> $hyper.parameters$penalty
#> [1] 4.60517
#>
#> $hyper.parameters$n
#> [1] 100
#>
#>
#> $hyper
#> [1] 4.60517
#>
#> attr(,"class")
#> [1] "prior"